

CONTENTS

Chapter No.	Page No.
1. Number System	1-19
2. Fractions	20-58
3. Percentage	59-78
4. Ratio and Proportion	79-101
5. Square Roots	102-115
6. Average	116-127
7. Interest	128-162
8. Profit and Loss	163-193
9. Discount	194-206
10. Partnership	207-215
11. Allegation and Mixture	216-234
12. Time and Distance	235-260
13. Time and Work	261-283
14. Basic Algebraic Identities	284-298
15. Indices and Surds	299-325
16. Graphs of Linear Equations	326-346
17. Triangle	347-400
18. Quadrilaterals—The Basics	401
19. Quadrilaterals — Parallelogram	402-409
20. Quadrilaterals — Rectangle	410-416
21. Quadrilaterals—Rhombus	417-425
22. Quadrilaterals—Square	426-433
23. Quadrilaterals—Trapezium	434-437
24. Polygons	438-447

25.	Circle	448-461
26.	Typical Geometrical Figures	462-482
27.	Trigonometric Ratios	483-526
28.	Statistics : Mean, Median and Mode	527-545
29.	Heights and Distances	546-570
30.	Histograms and Frequency Polygons	571-575
31.	Bar Diagrams and Pie charts	576-585
32.	HCF and LCM of Numbers	586-605
33.	Problem Solving	606-625
34.	Clock	626-631
35.	Calender	632-634
36.	Races, Games of Skill and Travelling around a Circle	635-641
37.	Income Tax, Insurance and Bankruptcy	642-649
38.	Mensuration	650-679
39.	Stocks and Shares	680-691
40.	Data Interpretation	692-718

Chapter 1: Number System

Introduction

Number systems have been in vogue since times immemorial. The Arabic and Roman number systems are also very old, just like the Indian number system. Let us study various number systems in this chapter.

Definition

Arithmetic is a science which deals with relationships of numbers with one another. It includes those methods that are applicable to numbers. One number can be represented in two ways.

Notation

It is the art of representing a number by means of figure, such as 492.

Numeration

It is the art of representing a number in words, such as 'four hundred and ninety-two' (492).

Digits

In the Indian number system, numbers are expressed by means of numerals. These numerals are—1, 2, 3, 4, 5, 6, 7, 8, 9 and 0. They are called 'digits.' This is the decimal system in which we use numbers from 0 to 9. The number 0 is called 'insignificant digit' whereas numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9 are called 'significant digits.'

Absolute and Local Values of Digits

The unchanged value of a digit is known as its 'absolute value.' If the value of any digit is not absolute, this value is called 'local value' of the digit. In the number 5492, the absolute value of 5 'five' and the absolute value of 9 is 'nine.' The local value of 5 is 5000, the local value of 9 is 90. Further, the local value of 2 is 2 in the number 5492 and the absolute value of 2 in this number is also 2. Absolute value is also called 'face value.'

Note: In any complete number, the value of the unit's digit is equal to its absolute value. The figure in the second place from the right has ten times its absolute value and the figure in the third place from the right has one hundred times its absolute value.

SOLVED EXAMPLES

Example: Find the difference of the local value and absolute value of 9 in 29735.

Solution: Local value of 9 = 9000

Absolute value of 9 = 9

Difference = 8991

Example: What is the difference between the local value of 8 and 9 in the number 78931?

Solution: Local value of 8 = 8000

Local value 9 = 900

Difference = 8000 – 7100

= 7100

INDIAN NUMERATION TABLE

Unit	=	$1 = 10^0$
Tens	=	10
	=	10^1
Hunderd	=	100
	=	10^2
Thousand	=	1,000
	=	10^3
Ten thousand	=	10,000
	=	10^4
Lakh	=	100,000
	=	10^5
Ten lakh	=	1,000,000
	=	10^6
Crore	=	10,000,000
	=	10^7
Ten crore	=	100,000,000
	=	10^8
Arab	=	1,000,000,000
	=	10^9
Ten Arab	=	10,000,000,000
	=	10^{10}
Kharab	=	1,00,000,000,000
	=	10^{11}
Ten Kharab	=	1,000,000,000,000
	=	10^{12}

After Kharab, we have Neel, Ten Neel, Padam,

Ten Padam, Sankh and Ten Sankh.

ENGLISH SYSTEM OF NUMERATION

Unit	=	1
	=	10^0
Tens	=	10
	=	10^1
Hunderd	=	100
	=	10^2
Thousand	=	1,000
	=	10^3
Ten thousand	=	10,000
	=	10^4
Hundred thousand	=	100,000
	=	10^5
Million	=	1,000,000
	=	10^6
Ten Million	=	10,000,000
	=	10^7
Hundred million	=	100,000,000
	=	10^8
Thousand million	=	1,000,000,000
	=	10^9
Ten thousand million	=	10,000,000,000
	=	10^{10} etc.

Numbers

All numbers are written by using the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The number 0 is called 'insignificant digit' whereas the rest are called 'significant digits.'

Natural Numbers (or counting numbers) Numbers

1, 2, 3, 4, ... etc. are called 'natural numbers.' There is no largest number whereas the smallest number is 1. If N is the set of natural numbers, then we write $N = \{1, 2, 3, 4, \dots\}$.

2. Whole Numbers: Set of whole numbers is written as $W = \{0, 1, 2, 3, 4, \dots\}$.

3. Integers: Set of integers is written as $I = \{0, \pm 1, \pm 2, \pm 3, \dots\}$.

Rules of Natural Numbers

A. Sum of the first n natural numbers is:

$$1 + 2 + 3 + 4 + \dots + n = \frac{n \times (n+1)}{2}$$

Symbolically, we write $\sum n = \frac{n \times (n+1)}{2}$.

B. Sum of the first n odd natural numbers is:

$$1 + 3 + 5 + 7 + \dots + n^{\text{th}} \text{ odd number} = n^2.$$

C. Sum of the first n even natural numbers is:

$$2 + 4 + 6 + 8 + \dots + n^{\text{th}} \text{ even number} \\ = n \times (n+1).$$

Example: Rohit saved Re. 1 on the first day of the year, Rs. 2 on the second day of the year, Rs. 3 on the third day of the year and so on. How much money will he save by the end of the non-leap year?

Solution: There are 365 days in a non-leap year. So, add the first 365 natural numbers.

$$\therefore \text{Money Rohit will have by the end of the year} \\ = \text{Rs. } (1 + 2 + 3 + \dots + 365)$$

$$= \text{Rs. } 365 \times \frac{(365+1)}{2} = \text{Rs. } 66795.$$

Example: A rickshaw puller saves one coin of Rs. 5 on first day of the week, three coins of Rs. 5 on the second day of the week, five coins of Rs. 5 on third day and so on. How much money will he have at the end of the week?

Solution: Number of Rs. 5 coins by the end of the week = sum of first seven odd numbers

$$= 7^2 = 49.$$

Sum of money with him = Rs. $5 \times 49 = \text{Rs. } 245$

Example: Find the sum of first 20 multiples of 12.

Solution: It is required to find the value of

$$12 \times 1 + 12 \times 2 + 12 \times 3 + \dots + 12 \times 19 + 12 \times 20$$

$$= 12(1 + 2 + 3 + \dots + 20)$$

$$= 12 \times \left(\frac{20 \times 21}{2} \right) = 2520$$

Important Results

1. Sum of the first m multiples of n

$$= n \times (\text{sum of the first } m \text{ natural numbers})$$

$$= n \times \frac{m(m+1)}{2} = \frac{nm(m+1)}{2}$$

2. Let there be first n counting numbers.

Case 1. If n is even, then there are $\frac{n}{2}$ odd numbers